Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Near‐term projections of drought in the southwestern United States (SWUS) are uncertain. The observed decrease in SWUS precipitation since the 1980s and heightened drought conditions since the 2000s have been linked to a cooling sea surface temperature (SST) trend in the Equatorial Pacific. Notably, climate models fail to reproduce these observed SST trends, and they may continue doing so in the future. Here, we assess the sensitivity of SWUS precipitation projections to future SST trends using a Green's function approach. Our findings reveal that a slight redistribution of SST leads to a wetting or drying of the SWUS. A reversal of the observed cooling trend in the Central and East Pacific over the next few decades would lead to a period of wetting in the SWUS. It is critical to consider the impact of possible SST pattern trends on SWUS precipitation trends until we fully trust SST evolution in climate models.more » « less
-
Kenawy, Ahmed (Ed.)Observational and modeling studies indicate significant changes in the global hydroclimate in the twentieth and early twenty-first centuries due to anthropogenic climate change. In this review, we analyze the recent literature on the observed changes in hydroclimate attributable to anthropogenic forcing, the physical and biological mechanisms underlying those changes, and the advantages and limitations of current detection and attribution methods. Changes in the magnitude and spatial patterns of precipitation minus evaporation (P–E) are consistent with increased water vapor content driven by higher temperatures. While thermodynamics explains most of the observed changes, the contribution of dynamics is not yet well constrained, especially at regional and local scales, due to limitations in observations and climate models. Anthropogenic climate change has also increased the severity and likelihood of contemporaneous droughts in southwestern North America, southwestern South America, the Mediterranean, and the Caribbean. An increased frequency of extreme precipitation events and shifts in phenology has also been attributed to anthropogenic climate change. While considerable uncertainties persist on the role of plant physiology in modulating hydroclimate and vice versa, emerging evidence indicates that increased canopy water demand and longer growing seasons negate the water-saving effects from increased water-use efficiency.more » « less
-
Abstract Climate models consistently project a significant drying in the Caribbean during climate change, and between 2013 and 2016 the region experienced the worst multiyear drought in the historical period. Although dynamical mechanisms have been proposed to explain drought in the Caribbean, the contributions from mass convergence and advection to precipitation minus evaporation ( P − E ) anomalies during drought are unknown. Here we analyze the dynamics of contemporaneous droughts in the Caribbean by decomposing the contributions of mass convergence and advection to P − E using observational and simulated data. We find that droughts arise from an anomalous subsidence over the southeastern Caribbean and northeastern South America. Although the contributions from mass convergence and advection vary across the region, it is mass convergence that is the main driver of drought in our study area. A similar dynamical pattern is observed in simulated droughts using the Community Earth System Model (CESM) Large Ensemble (LENS).more » « less
An official website of the United States government
